Prof. Matthieu Bloch
Tuesday, October 3, 2023
A \((n,K_n)\) code \(\calC\) for privacy amplification coding a discrete memoryless source \(p_X\) against side information \(Z\) consists of an encoding function \(f_n:\calX^n\to\set{1;K_n}\).
The rate of the code \(R\eqdef \frac{\log_2 K_n}{n}\) (bits/source symbol)
The secrecy and uniformity of \(M\) measured as
\[\begin{align*} S^{(n)}(\calC) \eqdef \bbV(P_{MZ^n},Q_M\cdot P_Z^{\otimes n}) \end{align*}\]
where \(Q_M\) is the uniform distribution on \(\set{1;K_n}\)
For a discrete memoryless source \(P_{XZ}\), \(C_{\textsf{pa}} = \bbH(X|Z)\)
Consider a generic source \((\calV,P_V)\) and a generic channel \((\calV,W_{U|V},\calU)\) with \(\card{\calU}<\infty\).
For \(\gamma>0\), let
\[\begin{align*} \calD_\gamma=\left\{(u,v)\in\calU\times\calV:\log\frac{1}{P_{U|V}(u|v)}>\gamma\right\}. \end{align*}\]
For each \({u}\in\calU\), let \(f({u})\) be a bin index drawn independently with uniform distribution on \(\intseq{1}{K}\).
Define an encoder as the mapping \({u}\rightarrow f({u})\).
For any \(\gamma>0\),
\[\begin{align*} \E{\bbV(P_{VK},P_{V}Q_K)} \leq \P[P_VW_{U|V}]{(U,V)\notin \calD_\gamma} + \frac{1}{2}\sqrt{\frac{K}{2^{\gamma}}}. \end{align*}\]
Consider a sequence of codes \(\set{f_n}_{n\geq 1}\) such that \(\lim_{n\to\infty}S^{(n)}=0\) and \(\lim_{n\to\infty}\frac{\log K_n}{n}\geq R\). Then \(R\geq \bbH(X|Z)\)
For \(P,Q\in\Delta(\calX)\), we have \[ \abs{H(P)-H(Q)} \leq \bbV(P,Q)\log \frac{\card{\calX}}{\bbV(P,Q)} \]